231 research outputs found

    FPTAS for optimizing polynomials over the mixed-integer points of polytopes in fixed dimension

    Full text link
    We show the existence of a fully polynomial-time approximation scheme (FPTAS) for the problem of maximizing a non-negative polynomial over mixed-integer sets in convex polytopes, when the number of variables is fixed. Moreover, using a weaker notion of approximation, we show the existence of a fully polynomial-time approximation scheme for the problem of maximizing or minimizing an arbitrary polynomial over mixed-integer sets in convex polytopes, when the number of variables is fixed.Comment: 16 pages, 4 figures; to appear in Mathematical Programmin

    Polyhedral Cones of Magic Cubes and Squares

    Full text link
    Using computational algebraic geometry techniques and Hilbert bases of polyhedral cones we derive explicit formulas and generating functions for the number of magic squares and magic cubes.Comment: 14 page

    Counting Integer flows in Networks

    Full text link
    This paper discusses new analytic algorithms and software for the enumeration of all integer flows inside a network. Concrete applications abound in graph theory \cite{Jaeger}, representation theory \cite{kirillov}, and statistics \cite{persi}. Our methods clearly surpass traditional exhaustive enumeration and other algorithms and can even yield formulas when the input data contains some parameters. These methods are based on the study of rational functions with poles on arrangements of hyperplanes

    Recognizing Graph Theoretic Properties with Polynomial Ideals

    Get PDF
    Many hard combinatorial problems can be modeled by a system of polynomial equations. N. Alon coined the term polynomial method to describe the use of nonlinear polynomials when solving combinatorial problems. We continue the exploration of the polynomial method and show how the algorithmic theory of polynomial ideals can be used to detect k-colorability, unique Hamiltonicity, and automorphism rigidity of graphs. Our techniques are diverse and involve Nullstellensatz certificates, linear algebra over finite fields, Groebner bases, toric algebra, convex programming, and real algebraic geometry.Comment: 20 pages, 3 figure

    Quantitative combinatorial geometry for continuous parameters

    Get PDF
    We prove variations of Carath\'eodory's, Helly's and Tverberg's theorems where the sets involved are measured according to continuous functions such as the volume or diameter. Among our results, we present continuous quantitative versions of Lov\'asz's colorful Helly theorem, B\'ar\'any's colorful Carath\'eodory's theorem, and the colorful Tverberg theorem.Comment: 22 pages. arXiv admin note: substantial text overlap with arXiv:1503.0611

    Quantitative Tverberg, Helly, & Carath\'eodory theorems

    Full text link
    This paper presents sixteen quantitative versions of the classic Tverberg, Helly, & Caratheodory theorems in combinatorial convexity. Our results include measurable or enumerable information in the hypothesis and the conclusion. Typical measurements include the volume, the diameter, or the number of points in a lattice.Comment: 33 page

    Quantitative Tverberg theorems over lattices and other discrete sets

    Full text link
    This paper presents a new variation of Tverberg's theorem. Given a discrete set SS of RdR^d, we study the number of points of SS needed to guarantee the existence of an mm-partition of the points such that the intersection of the mm convex hulls of the parts contains at least kk points of SS. The proofs of the main results require new quantitative versions of Helly's and Carath\'eodory's theorems.Comment: 16 pages. arXiv admin note: substantial text overlap with arXiv:1503.0611

    Helly numbers of Algebraic Subsets of Rd\mathbb R^d

    Full text link
    We study SS-convex sets, which are the geometric objects obtained as the intersection of the usual convex sets in Rd\mathbb R^d with a proper subset SRdS\subset \mathbb R^d. We contribute new results about their SS-Helly numbers. We extend prior work for S=RdS=\mathbb R^d, Zd\mathbb Z^d, and Zdk×Rk\mathbb Z^{d-k}\times\mathbb R^k; we give sharp bounds on the SS-Helly numbers in several new cases. We considered the situation for low-dimensional SS and for sets SS that have some algebraic structure, in particular when SS is an arbitrary subgroup of Rd\mathbb R^d or when SS is the difference between a lattice and some of its sublattices. By abstracting the ingredients of Lov\'asz method we obtain colorful versions of many monochromatic Helly-type results, including several colorful versions of our own results.Comment: 13 pages, 3 figures. This paper is a revised version of what was originally the first half of arXiv:1504.00076v
    corecore